JBG SMITH Properties (JBGS)
since 1960, the jbg companies has been an active investor, owner and developer in the washington metropolitan area's real estate market - one of the most dynamic markets in the world. jbg's track record in securing superior risk-adjusted returns is widely recognized within this high-performance market. our diverse portfolio encompasses millions of square feet of office, residential, hotel and retail projects, and includes many of the region's most distinguished properties. jbg is proud of its history of creating and preserving real estate values. we remain committed to continually improving the environment in the washington metropolitan area; creating value for our investors, partners and employees; and maintaining the highest standards of integrity and dependability in all of our endeavors.
Stock Price Trends
Stock price trends estimated using linear regression.
Paying users area
Try for free
Stock pages available for free today:
The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.
Get full access to the entire website.
This is a one-time payment. There is no automatic renewal.
Key facts
- The primary trend is decreasing.
- The decline rate of the primary trend is 32.88% per annum.
- JBGS price at the close of December 8, 2023 was $15.46 and was higher than the top border of the primary price channel by $0.42 (2.77%). This indicates a possible reversal in the primary trend direction.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 6.14% per annum.
- JBGS price at the close of December 8, 2023 was inside the secondary price channel.
Linear Regression Model
Model equation:
Yi = α + β × Xi + εi
Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)
Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)
where:
i - observation number
Yi - natural logarithm of JBGS price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e
Primary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
June 1, 2021 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 30, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
Secondary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
March 10, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
December 8, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $