# Mohawk Industries, Inc. (MHK)

mohawk industries is a leading global flooring manufacturer that creates products to enhance residential and commercial spaces around the world. mohawk’s vertically integrated manufacturing and distribution processes provide competitive advantages in the production of carpet, rugs, ceramic tile, laminate, wood, stone and vinyl flooring. our industry-leading innovation has yielded products and technologies that differentiate our brands in the marketplace and satisfy all remodeling and new construction requirements. our brands are among the most recognized in the industry and include american olean, bigelow, daltile, durkan, karastan, lees, marazzi, mohawk, mohawk home, pergo, unilin and quick-step. during the past decade, mohawk has transformed its business from an american carpet manufacturer into the world’s largest flooring company with operations in australia, brazil, canada, china, europe, india, malaysia, mexico, russia and the united states.

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

#### Try for free

Stock pages available for free today:

The data is hidden behind and trends are not shown in the charts.

Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

#### Key facts

- The primary trend is decreasing.
- The decline rate of the primary trend is 30.05% per annum.
- MHK price at the close of November 28, 2023 was $85.83 and was inside the primary price channel.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 12.87% per annum.
- MHK price at the close of November 28, 2023 was inside the secondary price channel.

### Linear Regression Model

Model equation:

Y_{i} = α + β × X_{i} + ε_{i}

Top border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} + 2 × s)

Bottom border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} – 2 × s)

where:

i - observation number

Y_{i} - natural logarithm of MHK price

X_{i} - time index, 1 day interval

σ - standard deviation of ε_{i}

a - estimator of α

b - estimator of β

s - estimator of σ

Exp() - calculates the exponent of e

### Primary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### March 5, 2021 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

### Secondary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### August 22, 2022 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $