Leidos Holdings, Inc. (LDOS)

leidos is a science and technology solutions leader working to address some of the world’s toughest challenges in national security, health, and engineering. the company’s 22,000 employees support vital missions for our government and the commercial sector, develop innovative solutions to drive better outcomes, and defend our nation’s digital and physical infrastructure from ‘new world’ threats. leidos is headquartered in reston, va. and had approximately \$6 billion in revenues for fiscal year 2013, on a pro forma basis, following the spin-off of the company’s technical, engineering and enterprise it business on sept. 27, 2013.

Stock Price Trends

Stock price trends estimated using linear regression.

Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

This is a one-time payment. There is no automatic renewal.

Key facts

• The primary trend is decreasing.
• The decline rate of the primary trend is 3.58% per annum.
• LDOS price at the close of November 28, 2023 was \$106.34 and was higher than the top border of the primary price channel by \$1.06 (1.01%). This indicates a possible reversal in the primary trend direction.
• The secondary trend is increasing.
• The growth rate of the secondary trend is 56.26% per annum.
• LDOS price at the close of November 28, 2023 was inside the secondary price channel.
• The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of LDOS price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e

Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

November 13, 2020 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

October 30, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

May 2, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

November 28, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$