# Knowles Corporation (KN)

at knowles corporation, we’ve achieved excellence in our industry for more than 65 years. we strive to continuously reinvent our industry and make products more powerful than before. our products and solutions help our customers find more ways to put better technology to work for their customers. we are a market leader and global supplier of advanced micro-acoustic, specialty components, and human interface solutions in the mobile communications, consumer electronics, medical technology, military/space and other industrial end markets. our deep experience and rigorous testing delivers consistently dependable and precise products including hearing aid components, mems (micro-electro-mechanical systems) microphones, speakers, receivers, transducers, capacitors, oscillators and more. we have always, and continue to, make waves in the industry by introducing disruptive communication technologies such as the world’s first miniature microphone and receiver for hearing aids in 1954, the f

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

This is a one-time payment. There is no automatic renewal.

#### Key facts

• The primary trend is decreasing.
• The decline rate of the primary trend is 12.31% per annum.
• KN price at the close of November 28, 2023 was \$16.00 and was inside the primary price channel.
• The secondary trend is increasing.
• The growth rate of the secondary trend is 7.75% per annum.
• KN price at the close of November 28, 2023 was inside the secondary price channel.
• The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

### Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of KN price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e

### Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### February 1, 2021 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

### Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### August 26, 2022 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$