CarGurus (CARG)
CarGurus, Inc. is a leading online automotive marketplace headquartered in Cambridge, Massachusetts, specializing in connecting buyers and sellers of new and used cars across the United States and internationally. Utilizing a technology-driven approach, the platform delivers transparent pricing, user-friendly tools, and verified dealer ratings, enhancing the car-buying experience. With a focus on innovation and data analytics, CarGurus aims to empower consumers and streamline transactions, positioning itself as a trusted resource in the automotive industry. The company's expansive network and robust marketing strategies have solidified its presence in a competitive market, making it an attractive option for investors looking to capitalize on the evolving automotive landscape.
Stock Price Trends
Stock price trends estimated using linear regression.
Paying users area
Try for free
Stock pages available for free today:
The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.
Get full access to the entire website.
This is a one-time payment. There is no automatic renewal.
Key facts
- The primary trend is increasing.
- The growth rate of the primary trend is 37.07% per annum.
- CARG price at the close of November 14, 2025 was $35.52 and was inside the primary price channel.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 0.91% per annum.
- CARG price at the close of November 14, 2025 was inside the secondary price channel.
- The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.
Linear Regression Model
Model equation:
Yi = α + β × Xi + εi
Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)
Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)
where:
i - observation number
Yi - natural logarithm of CARG price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e
Primary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
September 15, 2022 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 14, 2025 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
Description
- The primary trend is increasing.
- The growth rate of the primary trend is 37.07% per annum.
- CARG price at the close of November 14, 2025 was $35.52 and was inside the primary price channel.
Secondary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
October 11, 2024 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 14, 2025 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
Description
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 0.91% per annum.
- CARG price at the close of November 14, 2025 was inside the secondary price channel.