# EnerSys (ENS)

enersys is the global leader in stored energy solutions for industrial applications. we complement our extensive line of motive power, reserve power, aerospace/defense and specialty batteries with a full range of integrated services and systems. with sales and service locations throughout the world, and over 100 years of battery experience, enersys is the power/full solution for stored dc power products. eeo/aa employer/vet/disabled join our talent network at http://www.jobs.net/jobs/enersys/all-jobs/

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

This is a one-time payment. There is no automatic renewal.

#### Key facts

• The primary trend is increasing.
• The growth rate of the primary trend is 55.54% per annum.
• ENS price at the close of December 8, 2023 was \$92.45 and was lower than the bottom border of the primary price channel by \$7.10 (7.13%). This indicates a possible reversal in the primary trend direction.
• The secondary trend is decreasing.
• The decline rate of the secondary trend is 45.40% per annum.
• ENS price at the close of December 8, 2023 was higher than the top border of the secondary price channel by \$2.48 (2.76%). This indicates a possible reversal in the secondary trend direction.
• The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

### Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of ENS price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e

### Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### April 27, 2022 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### September 20, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

### Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### June 27, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### November 30, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$