Stock Price Trends

Sensata Technologies Holding plc (ST)

sensata technologies (nyse: st) is one of the world's leading suppliers of sensing, electrical protection, control and power management solutions. we design and manufacture devices that help satisfy the world’s growing need for safety, energy efficiency and a clean environment in global automotive, appliance, aircraft, industrial, military, heavy vehicle, heating, air-conditioning and ventilation, data, telecommunications, recreational vehicle and marine markets. we are a rapidly growing $2.4 billion business with operations and business centers in 16 countries and over 17,000 employees worldwide, including 900 people in mostly engineering, business development and corporate support roles at our u.s. headquarters in attleboro, ma. we pride ourselves on being a leading global company with strong, local decision making and innovative, complex products that make a real difference. we have a reputation for unwavering integrity and offer global exposure to world-class talent and signi

Stock Price Trends

Stock price trends estimated using linear regression.

Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

Key facts

  • The primary trend is decreasing.
  • The decline rate of the primary trend is 17.55% per annum.
  • ST price at the close of March 1, 2024 was $34.73 and was inside the primary price channel.
  • The secondary trend is decreasing.
  • The decline rate of the secondary trend is 34.62% per annum.
  • ST price at the close of March 1, 2024 was inside the secondary price channel.

Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of ST price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e


Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Price channel spread:

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

February 12, 2021 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

March 1, 2024 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

Description

  • The primary trend is decreasing.
  • The decline rate of the primary trend is 17.55% per annum.
  • ST price at the close of March 1, 2024 was $34.73 and was inside the primary price channel.

Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Price channel spread:

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

January 31, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

March 1, 2024 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

Description

  • The secondary trend is decreasing.
  • The decline rate of the secondary trend is 34.62% per annum.
  • ST price at the close of March 1, 2024 was inside the secondary price channel.