# Extreme Networks, Inc. (EXTR)

extreme networks, inc. (extr) delivers software-driven networking solutions that help it departments everywhere deliver the ultimate business outcome: stronger connections with customers, partners and employees. wired to wireless, desktop to data center, on-premise or through the cloud, we go to extreme measures for our 20,000-plus customers in more than 80 countries, delivering 100% insourced call-in technical support to organizations large and small, including some of the world's leading names in business, education, government, healthcare, manufacturing, and hospitality. founded in 1996, extreme is headquartered in san jose, california. for more information, visit extreme's website or call 1-888-257-3000.

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

#### Try for free

Stock pages available for free today:

The data is hidden behind and trends are not shown in the charts.

Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

#### Key facts

- The primary trend is decreasing.
- The decline rate of the primary trend is 87.25% per annum.
- EXTR price at the close of December 8, 2023 was $17.01 and was inside the primary price channel.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 27.12% per annum.
- EXTR price at the close of December 8, 2023 was higher than the top border of the secondary price channel by $0.17 (0.98%). This indicates a possible reversal in the secondary trend direction.

### Linear Regression Model

Model equation:

Y_{i} = α + β × X_{i} + ε_{i}

Top border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} + 2 × s)

Bottom border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} – 2 × s)

where:

i - observation number

Y_{i} - natural logarithm of EXTR price

X_{i} - time index, 1 day interval

σ - standard deviation of ε_{i}

a - estimator of α

b - estimator of β

s - estimator of σ

Exp() - calculates the exponent of e

### Primary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### August 2, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

### Secondary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### November 2, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $