Kontoor Brands, Inc. (KTB)
kontoor brands (nyse: ktb) is a global lifestyle apparel company, with a portfolio of some of the world's most iconic consumer brands: wrangler® and lee®. we design, manufacture and distribute superior high-quality products that look good and fit right, giving people around the world the freedom and confidence to express themselves.
Stock Price Trends
Stock price trends estimated using linear regression.
Paying users area
Try for free
Stock pages available for free today:
The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.
Get full access to the entire website.
This is a one-time payment. There is no automatic renewal.
Key facts
- The primary trend is decreasing.
- The decline rate of the primary trend is 30.26% per annum.
- KTB price at the close of November 28, 2023 was $53.34 and was higher than the top border of the primary price channel by $24.59 (85.56%). This indicates a possible reversal in the primary trend direction.
- The secondary trend is increasing.
- The growth rate of the secondary trend is 16.16% per annum.
- KTB price at the close of November 28, 2023 was inside the secondary price channel.
- The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.
Linear Regression Model
Model equation:
Yi = α + β × Xi + εi
Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)
Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)
where:
i - observation number
Yi - natural logarithm of KTB price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e
Primary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
March 2, 2021 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 10, 2022 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
Secondary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
March 31, 2022 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 28, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $