Stock Price Trends

Blackstone Inc. (BX)

blackstone is the world’s largest alternative asset manager. we seek to create positive economic impact and long-term value for our investors, the companies we invest in, and the communities in which we work. we do this by using extraordinary people and flexible capital to help companies solve problems. our $731 billion in assets under management include investment vehicles focused on private equity, real estate, public debt and equity, infrastructure, life sciences, growth equity, opportunistic, non-investment grade credit, real assets and secondary funds, all on a global basis. further information is available at www.blackstone.com. follow blackstone on twitter @blackstone.

Stock Price Trends

Stock price trends estimated using linear regression.

Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

Key facts

  • The primary trend is decreasing.
  • The decline rate of the primary trend is 23.68% per annum.
  • BX price at the close of November 28, 2023 was $107.64 and was higher than the top border of the primary price channel by $22.11 (25.85%). This indicates a possible reversal in the primary trend direction.
  • The secondary trend is increasing.
  • The growth rate of the secondary trend is 34.06% per annum.
  • BX price at the close of November 28, 2023 was inside the secondary price channel.
  • The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of BX price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e


Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Price channel spread:

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

July 21, 2021 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

June 28, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $


Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Price channel spread:

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

December 1, 2022 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $

November 28, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $