# Lattice Semiconductor Corporation (LSCC)

lattice semiconductor (nasdaq: lscc) is the global leader in smart connectivity solutions, providing market leading intellectual property and low-power, small form-factor devices that enable more than 8,000 global customers to quickly deliver innovative and differentiated cost and power efficient products. the company’s broad end-market exposure extends from consumer electronics to industrial equipment, communications infrastructure and licensing. lattice was founded in 1983 and is headquartered in portland, oregon. in march 2015, the company acquired silicon image, which is a leader in setting industry standards including the highly successful hdmi®, dvi™, mhl® and wirelesshd® standards.

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

#### Try for free

Stock pages available for free today:

The data is hidden behind and trends are not shown in the charts.

Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

#### Key facts

- The primary trend is increasing.
- The growth rate of the primary trend is 21.65% per annum.
- LSCC price at the close of December 8, 2023 was $61.71 and was inside the primary price channel.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 86.97% per annum.
- LSCC price at the close of December 8, 2023 was inside the secondary price channel.
- The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

### Linear Regression Model

Model equation:

Y_{i} = α + β × X_{i} + ε_{i}

Top border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} + 2 × s)

Bottom border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} – 2 × s)

where:

i - observation number

Y_{i} - natural logarithm of LSCC price

X_{i} - time index, 1 day interval

σ - standard deviation of ε_{i}

a - estimator of α

b - estimator of β

s - estimator of σ

Exp() - calculates the exponent of e

### Primary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### November 4, 2020 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

### Secondary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### August 21, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $