# UFP Technologies, Inc. (UFPT)

ufp technologies is a producer of innovative custom-engineered components, products, and specialty packaging. founded in 1963 and headquartered in newburyport, massachusetts, our company has pioneered a long list of processes and applications, has a large portfolio of active patents, and holds proprietary positions on many advanced materials from leading global suppliers. with a deep and accomplished engineering team, ufp technologies is a critical link in the value chain between raw material suppliers and oems. our team acts as an extension of customers'​ in-house research, engineering and manufacturing groups, working closely with them to solve their most complex product and packaging challenges. using foams, plastics, composites, and natural fiber materials, we design and manufacture a vast range of solutions primarily for six target markets including medical, automotive, aerospace & defense, electronics, consumer and industrial.

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.

This is a one-time payment. There is no automatic renewal.

#### Key facts

• The primary trend is increasing.
• The growth rate of the primary trend is 59.88% per annum.
• UFPT price at the close of December 8, 2023 was \$177.08 and was inside the primary price channel.
• The secondary trend is decreasing.
• The decline rate of the secondary trend is 38.69% per annum.
• UFPT price at the close of December 8, 2023 was higher than the top border of the secondary price channel by \$5.89 (3.44%). This indicates a possible reversal in the secondary trend direction.
• The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

### Linear Regression Model

Model equation:
Yi = α + β × Xi + εi

Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)

Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)

where:

i - observation number
Yi - natural logarithm of UFPT price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e

### Primary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### August 28, 2020 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

### Secondary Trend

Start date:
End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1
= Exp(365 × ) – 1
=

Exp(4 × s) – 1
= Exp(4 × ) – 1
=

#### June 13, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$

#### December 8, 2023 calculations

Top border of price channel:

Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= \$

Bottom border of price channel:

Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= \$