# Neurocrine Biosciences, Inc. (NBIX)

neurocrine biosciences, inc of san diego is a product based biopharmaceutical company focusing on the development and commercialization of innovative pharmaceutical products to treat unmet medical needs. the company's research and development efforts are focused on neurological and endocrine diseases and disorders. our product candidates address some of the largest pharmaceutical markets in the world including endometriosis, irritable bowel syndrome, anxiety, depression, pain, diabetes, insomnia, and other neurological and endocrine related diseases and disorders

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

#### Try for free

Stock pages available for free today:

The data is hidden behind and trends are not shown in the charts.

Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

#### Key facts

- The primary trend is increasing.
- The growth rate of the primary trend is 82.14% per annum.
- NBIX price at the close of November 28, 2023 was $112.84 and was lower than the bottom border of the primary price channel by $6.21 (5.22%). This indicates a possible reversal in the primary trend direction.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 14.92% per annum.
- NBIX price at the close of November 28, 2023 was inside the secondary price channel.
- The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.

### Linear Regression Model

Model equation:

Y_{i} = α + β × X_{i} + ε_{i}

Top border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} + 2 × s)

Bottom border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} – 2 × s)

where:

i - observation number

Y_{i} - natural logarithm of NBIX price

X_{i} - time index, 1 day interval

σ - standard deviation of ε_{i}

a - estimator of α

b - estimator of β

s - estimator of σ

Exp() - calculates the exponent of e

### Primary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### May 16, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### October 17, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

### Secondary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### September 12, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $