# Arcus Biosciences, Inc. (RCUS)

arcus biosciences is an exciting young company founded on a vision of creating new cancer therapeutics through the utilization of emerging insights in immunology. arcus was formed in 2015 by a group of seasoned researchers from the biotechnology and pharmaceutical industries and is located in the san francisco bay area, in the heart of the world’s largest biotechnology research hub. unlike many other organizations, we view the drug discovery process as one that requires equal parts of technology and art, science and elegance, not as a commodity that can be outsourced. for this reason, we have assembled and are continuing to build an internal team of uniquely qualified individuals with extraordinary knowledge, skills and drive. arcus is rapidly establishing a portfolio of novel therapeutics encompassing both small molecules and biologics that target various facets of the immune system implicated in pathology or modulation of the cellular processes of cancer. these new drugs will then be

## Stock Price Trends

Stock price trends estimated using linear regression.

## Paying users area

#### Try for free

Stock pages available for free today:

The data is hidden behind and trends are not shown in the charts.

Unhide data and trends.

Get full access to the entire website.

This is a one-time payment. There is no automatic renewal.

#### Key facts

- The primary trend is decreasing.
- The decline rate of the primary trend is 23.60% per annum.
- RCUS price at the close of November 28, 2023 was $14.15 and was inside the primary price channel.
- The secondary trend is decreasing.
- The decline rate of the secondary trend is 86.03% per annum.
- RCUS price at the close of November 28, 2023 was inside the secondary price channel.

### Linear Regression Model

Model equation:

Y_{i} = α + β × X_{i} + ε_{i}

Top border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} + 2 × s)

Bottom border of price channel:

Exp(Y_{i}) = Exp(a + b × X_{i} – 2 × s)

where:

i - observation number

Y_{i} - natural logarithm of RCUS price

X_{i} - time index, 1 day interval

σ - standard deviation of ε_{i}

a - estimator of α

b - estimator of β

s - estimator of σ

Exp() - calculates the exponent of e

### Primary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### January 8, 2021 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

### Secondary Trend

Start date:

End date:

a =

b =

s =

Annual growth rate:

Exp(365 × b) – 1

= Exp(365 × ) – 1

=

Price channel spread:

Exp(4 × s) – 1

= Exp(4 × ) – 1

=

#### August 23, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $

#### November 28, 2023 calculations

Top border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} + 2 × s)

= Exp(a + b × + 2 × s)

= Exp( + × + 2 × )

= Exp()

= $

Bottom border of price channel:

Exp(Y_{})

= Exp(a + b × X_{} – 2 × s)

= Exp(a + b × – 2 × s)

= Exp( + × – 2 × )

= Exp()

= $