The Kraft Heinz Company (KHC)
the kraft heinz company (nasdaq: khc) is the third-largest food and beverage company in north america and the fifth-largest food and beverage company in the world, with eight $1 billion+ brands. a globally trusted producer of delicious foods, the kraft heinz company provides high quality, great taste and nutrition for all eating occasions whether at home, in restaurants or on the go. the company’s iconic brands include kraft, heinz, abc, capri sun, classico, jell-o, kool-aid, lunchables, maxwell house, ore-ida, oscar mayer, philadelphia, planters, plasmon, quero, weight watchers smart ones and velveeta. the kraft heinz company is dedicated to the sustainable health of our people, our planet and our company. for more information, visit www.kraftheinzcompany.com
Stock Price Trends
Stock price trends estimated using linear regression.
Paying users area
Try for free
Stock pages available for free today:
The data is hidden behind and trends are not shown in the charts.
Unhide data and trends.
Get full access to the entire website.
This is a one-time payment. There is no automatic renewal.
Key facts
- The primary trend is decreasing.
- The decline rate of the primary trend is 24.44% per annum.
- KHC price at the close of December 8, 2023 was $36.23 and was higher than the top border of the primary price channel by $2.29 (6.74%). This indicates a possible reversal in the primary trend direction.
- The secondary trend is increasing.
- The growth rate of the secondary trend is 254.95% per annum.
- KHC price at the close of December 8, 2023 was inside the secondary price channel.
- The direction of the secondary trend is opposite to the direction of the primary trend. This indicates a possible reversal in the direction of the primary trend.
Linear Regression Model
Model equation:
Yi = α + β × Xi + εi
Top border of price channel:
Exp(Yi) = Exp(a + b × Xi + 2 × s)
Bottom border of price channel:
Exp(Yi) = Exp(a + b × Xi – 2 × s)
where:
i - observation number
Yi - natural logarithm of KHC price
Xi - time index, 1 day interval
σ - standard deviation of εi
a - estimator of α
b - estimator of β
s - estimator of σ
Exp() - calculates the exponent of e
Primary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
December 7, 2022 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
November 20, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
Secondary Trend
Start date:
End date:
a =
b =
s =
Annual growth rate:
Exp(365 × b) – 1
= Exp(365 × ) – 1
=
Price channel spread:
Exp(4 × s) – 1
= Exp(4 × ) – 1
=
November 9, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $
December 8, 2023 calculations
Top border of price channel:
Exp(Y)
= Exp(a + b × X + 2 × s)
= Exp(a + b × + 2 × s)
= Exp( + × + 2 × )
= Exp()
= $
Bottom border of price channel:
Exp(Y)
= Exp(a + b × X – 2 × s)
= Exp(a + b × – 2 × s)
= Exp( + × – 2 × )
= Exp()
= $